全部版块 我的主页
论坛 经济学人 二区 外文文献专区
540 0
2022-03-05
摘要翻译:
我们正在研究Gately点,这是合作博弈的一个既定的解概念。我们指出,有些超加对策的Gately点不是唯一的,即一般的概念是集值的,而不是实际的点。我们导出了Gately点是唯一归责的条件,并给出了几何解释。盖特利点可以理解为两点定义的直线的交集。我们的唯一性条件保证这两点不重合。我们为破坏的负面倾向提供了示范解释。我们简要地证明了Gately点的唯一性条件包括拟平衡对策,并讨论了在此背景下Gately点与$\tau$-值的关系。最后,我们指出了成本博弈和ACA方法之间的关系,并对Gately point的实现和即将推出的合作博弈理论软件包做了一些评论。
---
英文标题:
《Conditions for the uniqueness of the Gately point for cooperative games》
---
作者:
Jochen Staudacher and Johannes Anwander
---
最新提交年份:
2019
---
分类信息:

一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  We are studying the Gately point, an established solution concept for cooperative games. We point out that there are superadditive games for which the Gately point is not unique, i.e. in general the concept is rather set-valued than an actual point. We derive conditions under which the Gately point is guaranteed to be a unique imputation and provide a geometric interpretation. The Gately point can be understood as the intersection of a line defined by two points with the set of imputations. Our uniqueness conditions guarantee that these two points do not coincide. We provide demonstrative interpretations for negative propensities to disrupt. We briefly show that our uniqueness conditions for the Gately point include quasibalanced games and discuss the relation of the Gately point to the $\tau$-value in this context. Finally, we point out relations to cost games and the ACA method and end upon a few remarks on the implementation of the Gately point and an upcoming software package for cooperative game theory.
---
PDF链接:
https://arxiv.org/pdf/1901.01485
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群