摘要翻译:
我提出模式识别、记忆和处理是可以作为心理功能理论建模的原则集的关键概念。大多数关于思维功能的问题都可以通过这些原则的描述性建模和定义来回答。基于模式识别系统能够识别其自身活动模式的假设,可以得出一个可理解的意识定义。这些原理、描述性建模和定义可以作为认知科学的理论和应用研究的基础,特别是在
人工智能研究中。
---
英文标题:
《Pattern Recognition Theory of Mind》
---
作者:
Gilberto de Paiva
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
I propose that pattern recognition, memorization and processing are key concepts that can be a principle set for the theoretical modeling of the mind function. Most of the questions about the mind functioning can be answered by a descriptive modeling and definitions from these principles. An understandable consciousness definition can be drawn based on the assumption that a pattern recognition system can recognize its own patterns of activity. The principles, descriptive modeling and definitions can be a basis for theoretical and applied research on cognitive sciences, particularly at artificial intelligence studies.
---
PDF链接:
https://arxiv.org/pdf/0907.4509