摘要翻译:
本文计算了抛物势中亚扩散连续时间随机游动的两点相关函数<x(t2)x(t1)>,将单次统计量的已知结果推广到两次。得到了一个封闭的初始平衡解析表达式,揭示了与Mittag-Leffler衰变的明显偏差。
---
英文标题:
《Two-point correlation function of the fractional Ornstein-Uhlenbeck
  process》
---
作者:
A. Baule, R. Friedrich
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
  We calculate the two-point correlation function <x(t2)x(t1)> for a subdiffusive continuous time random walk in a parabolic potential, generalizing well-known results for the single-time statistics to two times. A closed analytical expression is found for initial equilibrium, revealing a clear deviation from a Mittag-Leffler decay. 
---
PDF链接:
https://arxiv.org/pdf/705.4473