摘要翻译:
对于开边界的(n+1)态随机一维非平衡晶格模型族,只要满足反应速率的某些约束条件,就存在精确的行波解。这些解描述了产物激波或畴壁的扩散运动与一个简单的有偏随机步行者的动力学。这些系统的稳态可以用这种激波或畴壁的线性叠加来写。这些稳态也可以用矩阵积的形式表示。我们证明了在这种情况下,系统的相关二次代数总是具有一个具有泛型结构的二维表示。给出了n=1和n=2情况下的几个例子。
---
英文标题:
《Matrix Product Steady States as Superposition of Product Shock Measures
in 1D Driven Systems》
---
作者:
F H Jafarpour and S R Masharian
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
It is known that exact traveling wave solutions exist for families of (n+1)-states stochastic one-dimensional non-equilibrium lattice models with open boundaries provided that some constraints on the reaction rates are fulfilled. These solutions describe the diffusive motion of a product shock or a domain wall with the dynamics of a simple biased random walker. The steady state of these systems can be written in terms of linear superposition of such shocks or domain walls. These steady states can also be expressed in a matrix product form. We show that in this case the associated quadratic algebra of the system has always a two-dimensional representation with a generic structure. A couple of examples for n=1 and n=2 cases are presented.
---
PDF链接:
https://arxiv.org/pdf/707.4341