摘要翻译:
数据分析中使用的树状图是超参数空间,因此是非阿基米德几何的对象。已知树状图存在$P$-adic表示。由无穷远处的一点完成,它们可以被视为与$p$-adic射影线相关联的Bruhat-Tits树的子树。结果表明,代数几何中已知的某些模空间是树状图(族)的p-adic参数空间,随机分类也可以在此框架内进行。最后,我们计算了树图隐藏部分的拓扑结构。
---
英文标题:
《Degenerating families of dendrograms》
---
作者:
Patrick Erik Bradley
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist $p$-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the $p$-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are $p$-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.
---
PDF链接:
https://arxiv.org/pdf/707.3536