摘要翻译:
证明了有限域上二维局部Galois表示的有限平坦模型的模空间中的非常分量是连通的。这是基辛猜想的。作为全局Galois表示的应用,我们证明了变形环和Hecke环的模性比较定理。
---
英文标题:
《On the connected components of moduli spaces of finite flat models》
---
作者:
Naoki Imai
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the non-ordinary component is connected in the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This was conjectured by Kisin. As an application to global Galois representations, we prove a theorem on the modularity comparing a deformation ring and a Hecke ring.
---
PDF链接:
https://arxiv.org/pdf/0801.1948