摘要翻译:
多值治疗模型通常是在限制性假设下研究的:有序选择,以及最近的无序单调性。我们展示了如何在一个更一般的模型类别中识别治疗效果,该模型允许多维未观察到的异质性。我们的结果依赖于两个主要假设:治疗分配必须是阈值交叉规则的可测量函数,并且必须有足够的连续仪器可用。我们对几类模型说明了我们的方法。
---
英文标题:
《Identifying Effects of Multivalued Treatments》
---
作者:
Sokbae Lee, Bernard Salani\'e
---
最新提交年份:
2018
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
Multivalued treatment models have typically been studied under restrictive assumptions: ordered choice, and more recently unordered monotonicity. We show how treatment effects can be identified in a more general class of models that allows for multidimensional unobserved heterogeneity. Our results rely on two main assumptions: treatment assignment must be a measurable function of threshold-crossing rules, and enough continuous instruments must be available. We illustrate our approach for several classes of models.
---
PDF链接:
https://arxiv.org/pdf/1805.00057