摘要翻译:
我们提出了一个统一的音频恢复问题建模和算法框架。它包括分析稀疏先验和更经典的合成稀疏先验,规则稀疏以及由收缩算子(如社会收缩)所体现的各种形式的结构化稀疏。该框架的多功能性在两个恢复场景中得到了说明:去噪和去噪。在这些场景中的大量实验结果突出了稀疏先验分析提供的20%甚至更多的加速,以及在社交和朴素风格中都可以实现的实质性去噪质量。虽然两种口味总体上表现出相似的性能,但它们的详细比较显示出不同的趋势,这取决于是否考虑去噪或去噪。
---
英文标题:
《A modeling and algorithmic framework for (non)social (co)sparse audio
restoration》
---
作者:
Cl\'ement Gaultier (PANAMA), Nancy Bertin (PANAMA), Sr{\dj}an Kiti\'c,
R\'emi Gribonval (PANAMA)
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
We propose a unified modeling and algorithmic framework for audio restoration problem. It encompasses analysis sparse priors as well as more classical synthesis sparse priors, and regular sparsity as well as various forms of structured sparsity embodied by shrinkage operators (such as social shrinkage). The versatility of the framework is illustrated on two restoration scenarios: denoising, and declipping. Extensive experimental results on these scenarios highlight both the speedups of 20% or even more offered by the analysis sparse prior, and the substantial declipping quality that is achievable with both the social and the plain flavor. While both flavors overall exhibit similar performance, their detailed comparison displays distinct trends depending whether declipping or denoising is considered.
---
PDF链接:
https://arxiv.org/pdf/1711.11259