摘要翻译:
本文讨论Gromov-Witten-Welschinger类及其应用。特别地,利用GWW-类重新定义了Horava关于实代数簇的量子上同调的定义,并将其作为DG-操作数引入。根据这个定义,我们推测真实变体的镜像对称性。
---
英文标题:
《Towards quantum cohomology of real varieties》
---
作者:
Ozgur Ceyhan
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
---
英文摘要:
This paper is devoted to a discussion of Gromov-Witten-Welschinger (GWW) classes and their applications. In particular, Horava's definition of quantum cohomology of real algebraic varieties is revisited by using GWW-classes and it is introduced as a DG-operad. In light of this definition, we speculate about mirror symmetry for real varieties.
---
PDF链接:
https://arxiv.org/pdf/0710.0922