摘要翻译:
我们计算了亏格曲线的模空间M_g^f的每个不可约分量的z/\ell和\ell-adic单模,以及p-秩f。特别地,我们证明了当g>=3时,M_g^f的各组分的z/\ell-单群是辛群Sp_{2g}(z/\ell)。给出了给定亏格和p-秩曲线的自同构群、雅可比群、类群和zeta函数的泛型行为的应用。
---
英文标题:
《Monodromy of the p-rank strata of the moduli space of curves》
---
作者:
Jeff Achter and Rachel Pries
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We compute the Z/\ell and \ell-adic monodromy of every irreducible component of the moduli space M_g^f of curves of genus and and p-rank f. In particular, we prove that the Z/\ell-monodromy of every component of M_g^f is the symplectic group Sp_{2g}(Z/\ell) if g>=3 and \ell is a prime distinct from p. We give applications to the generic behavior of automorphism groups, Jacobians, class groups, and zeta functions of curves of given genus and p-rank.
---
PDF链接:
https://arxiv.org/pdf/0707.2110