摘要翻译:
在本文中,我们将引入对数格式的一类态射(在Fontaine、Illusie和Kato意义下),并研究它们的模。在此基础上,我们定义了任意格式上的环面代数栈的概念,并研究了它的一些基本性质,这些代数栈可以看作是代数栈框架内的环面嵌入。此外,我们还研究了环形嵌入的叠加理论模拟。
---
英文标题:
《Logarithmic geometry, minimal free resolutions and toric algebraic
  stacks》
---
作者:
Isamu Iwanari
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  In this paper we will introduce a certain type of morphisms of log schemes (in the sense of Fontaine, Illusie, and Kato) and investigate their moduli. Then by applying this we define a notion of toric algebraic stacks over arbitrary schemes, which may be regarded as torus embeddings within the framework of algebraic stacks, and study some basic properties. Furthermore, we study the stack-theoretic analogue of toroidal embeddings. 
---
PDF链接:
https://arxiv.org/pdf/0707.2568