摘要翻译:
本文证明了复射影平面上一条次至少等于14的极一般曲线的补是Kobayashi意义上的双曲型。因此,我们用一种新的方法改进了El Goul已知的界。我们还改进了一个具有两个分量的非常一般的曲线的情况。
---
英文标题:
《Logarithmic vector fields and hyperbolicity》
---
作者:
Erwan Rousseau (IRMA)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
In this article we prove that the complement of a very generic curve of degree at least equal to 14 in the complex projective plane is hyperbolic in the sense of Kobayashi. Thus, using a new method, we improve the former known bound obtained by El Goul. We also improve the case of a very generic curve with two components.
---
PDF链接:
https://arxiv.org/pdf/0709.3881