全部版块 我的主页
论坛 经济学人 二区 外文文献专区
249 0
2022-03-06
摘要翻译:
本文利用$\ell2$-box技术将二元约束转化为一个带有$\ell2$sphere约束的box,将混合整数规划(MIP)问题转化为一个精确的连续模型。重新表述的问题可以通过双上升算法结合子问题的优化-最小化(MM)方法来解决,以解决云无线接入网(Cloud-RAN)的网络功耗问题,并导致用不精确MM算法处理的一系列凸(DC)子问题的差分。在得到最终解后,我们将其作为双向群稀疏波束形成(GSBF)算法的初始结果,以提高波束形成器的群稀疏性,而不是使用加权的$ell1/\ell2$-范数。仿真结果表明,新方法比双段GSBF算法具有更小的网络功耗,特别是在稀疏情况下,即远程无线电头多而用户少的云RAN中。
---
英文标题:
《$L_2$-Box Optimization for Green Cloud-RAN via Network Adaptation》
---
作者:
Fan Zhang, Qiong Wu, Hao Wang, and Yuanming Shi
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this paper, we propose a reformulation for the Mixed Integer Programming (MIP) problem into an exact and continuous model through using the $\ell_2$-box technique to recast the binary constraints into a box with an $\ell_2$ sphere constraint. The reformulated problem can be tackled by a dual ascent algorithm combined with a Majorization-Minimization (MM) method for the subproblems to solve the network power consumption problem of the Cloud Radio Access Network (Cloud-RAN), and which leads to solving a sequence of Difference of Convex (DC) subproblems handled by an inexact MM algorithm. After obtaining the final solution, we use it as the initial result of the bi-section Group Sparse Beamforming (GSBF) algorithm to promote the group-sparsity of beamformers, rather than using the weighted $\ell_1 / \ell_2$-norm. Simulation results indicate that the new method outperforms the bi-section GSBF algorithm by achieving smaller network power consumption, especially in sparser cases, i.e., Cloud-RANs with a lot of Remote Radio Heads (RRHs) but fewer users.
---
PDF链接:
https://arxiv.org/pdf/1711.10788
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群