摘要翻译:
自适应蒙特卡罗方法是最近出现的方差减少技术。在这项工作中,我们提出了一个数学设置,大大放宽了Vazquez-Abad和Dufresne,Fu和Su以及Arouna提出的自适应重要性抽样技术所需的假设。在局部假设下,我们建立了自适应Monte Carlo估计的收敛性和渐近正态性,这在实践中是容易验证的。提出了一种用随机截断的随机算法逼近最优重要抽样参数的方法。最后,我们将该技术应用于金融衍生工具的一些估值实例。
---
英文标题:
《A framework for adaptive Monte-Carlo procedures》
---
作者:
Bernard Lapeyre (CERMICS), J\'er\^ome Lelong (LJK)
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
Adaptive Monte Carlo methods are recent variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented by Vazquez-Abad and Dufresne, Fu and Su, and Arouna. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practice. We present one way of approximating the optimal importance sampling parameter using a randomly truncated stochastic algorithm. Finally, we apply this technique to some examples of valuation of financial derivatives.
---
PDF链接:
https://arxiv.org/pdf/1001.3551