摘要翻译:
最近的程序的相对化超等价框架提供了一个统一的强等价和一致等价的推广。它似乎特别适合于程序优化和模块化编程的应用,因为它的灵活性允许我们相互独立地限制上下文程序中的头部字母和正文字母。研究了由稳定的、支持的和支持的极小模型给出的逻辑程序的三种语义的关系超等价性。对于每种语义,我们根据头部和身体字母是直接给出的还是作为给定集合的补充,识别出四种类型的上下文。相对于直接指定头部和身体字母表的上下文的超等价性以前已经被研究过。在本文中,我们建立了关于其他三种类型的上下文程序的判定相对化超等价的复杂性。出现在逻辑程序设计(TPLP)的理论与实践中。
---
英文标题:
《Relativized hyperequivalence of logic programs for modular programming》
---
作者:
Miroslaw Truszczy\'nski, Stefan Woltran
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
A recent framework of relativized hyperequivalence of programs offers a unifying generalization of strong and uniform equivalence. It seems to be especially well suited for applications in program optimization and modular programming due to its flexibility that allows us to restrict, independently of each other, the head and body alphabets in context programs. We study relativized hyperequivalence for the three semantics of logic programs given by stable, supported and supported minimal models. For each semantics, we identify four types of contexts, depending on whether the head and body alphabets are given directly or as the complement of a given set. Hyperequivalence relative to contexts where the head and body alphabets are specified directly has been studied before. In this paper, we establish the complexity of deciding relativized hyperequivalence with respect to the three other types of context programs. To appear in Theory and Practice of Logic Programming (TPLP).
---
PDF链接:
https://arxiv.org/pdf/0907.4128