全部版块 我的主页
论坛 经济学人 二区 外文文献专区
395 0
2022-03-06
摘要翻译:
我们最近报道了简单遗传算法(SGA)能够执行一种显着形式的次线性计算,这与数据挖掘中的一般属性交互问题有直接的联系。在本文中,我们解释了SGA如何利用这种计算能力对一个广泛的适应度函数进行有效的自适应。基于一个实际适应度函数可能属于这一广义类的相对容易性,我们提出了一个关于遗传算法工作的新假设。我们解释了为什么我们的假设优于构建块假设,并且通过经验验证,我们给出了一个实验结果,在这个实验中,使用一个简单的称为钳位的机制显著地提高了在大规模随机生成的max3-SAT问题上具有均匀交叉的SGA的性能。
---
英文标题:
《On the Workings of Genetic Algorithms: The Genoclique Fixing Hypothesis》
---
作者:
Keki M. Burjorjee
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  We recently reported that the simple genetic algorithm (SGA) is capable of performing a remarkable form of sublinear computation which has a straightforward connection with the general problem of interacting attributes in data-mining. In this paper we explain how the SGA can leverage this computational proficiency to perform efficient adaptation on a broad class of fitness functions. Based on the relative ease with which a practical fitness function might belong to this broad class, we submit a new hypothesis about the workings of genetic algorithms. We explain why our hypothesis is superior to the building block hypothesis, and, by way of empirical validation, we present the results of an experiment in which the use of a simple mechanism called clamping dramatically improved the performance of an SGA with uniform crossover on large, randomly generated instances of the MAX 3-SAT problem.
---
PDF链接:
https://arxiv.org/pdf/0905.2473
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群