摘要翻译:
在本文中,我们提出了一个新的遗传算法(GA)解决一个简单但具有挑战性的商业益智游戏,称为禅益智花园(ZPG)。在给出合适的编码方案和候选解的适应度函数之前,我们对博弈进行了详细的描述。然后比较了遗传算法和A*算法的性能。我们的结果表明,遗传算法在解的质量上优于信息搜索,在计算资源需求方面明显优于信息搜索。最后,我们简要讨论了我们的发现对解决游戏和其他“现实世界”问题的影响。
---
英文标题:
《Genetic algorithms and the art of Zen》
---
作者:
Jack Coldridge and Martyn Amos
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this paper we present a novel genetic algorithm (GA) solution to a simple yet challenging commercial puzzle game known as the Zen Puzzle Garden (ZPG). We describe the game in detail, before presenting a suitable encoding scheme and fitness function for candidate solutions. We then compare the performance of the genetic algorithm with that of the A* algorithm. Our results show that the GA is competitive with informed search in terms of solution quality, and significantly out-performs it in terms of computational resource requirements. We conclude with a brief discussion of the implications of our findings for game solving and other "real world" problems.
---
PDF链接:
https://arxiv.org/pdf/1005.4446