摘要翻译:
疟疾是由疟原虫属寄生虫引起的蚊子传播的血液疾病。疟疾的常规诊断工具是显微镜下对患者血细胞染色的检查。待检测的血液被放在玻片中,在显微镜下观察,以计数受感染的红细胞数量。一名专业技术人员以强烈的视觉和精神集中参与对幻灯片的检查。这是一个既烦人又耗时的过程。本文构建了一个新的mage处理系统,用于血涂片中疟原虫的检测和定量,并开发了
机器学习算法,根据感染细胞的特征进行学习、检测和确定感染细胞的类型。
---
英文标题:
《Malaria Detection Using Image Processing and Machine Learning》
---
作者:
Suman Kunwar
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Malaria is mosquito-borne blood disease caused by parasites of the genus Plasmodium. Conventional diagnostic tool for malaria is the examination of stained blood cell of patient in microscope. The blood to be tested is placed in a slide and is observed under a microscope to count the number of infected RBC. An expert technician is involved in the examination of the slide with intense visual and mental concentration. This is tiresome and time consuming process. In this paper, we construct a new mage processing system for detection and quantification of plasmodium parasites in blood smear slide, later we develop Machine Learning algorithm to learn, detect and determine the types of infected cells according to its features.
---
PDF链接:
https://arxiv.org/pdf/1801.10031