摘要翻译:
对于按次扩散连续时间随机游动建模的系统,我们给出了时均可观测量分布的一般公式。对于与热浴耦合的高斯随机游动,我们恢复了遍历性和Boltzmann统计量;对于反常次扩散情形,我们根据L\'Evy的广义中心极限定理构造了弱非遍历统计力学框架。作为一个例子,我们计算了在无偏和均匀偏置的情况下,$\bar{X}$的分布:粒子位置的时间平均值,表明$\bar{X}$与系综平均值$<X>$相比有很大的起伏。
---
英文标题:
《Distribution of Time-Averaged Observables for Weak Ergodicity Breaking》
---
作者:
Adi Rebenshtok, Eli Barkai
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We find a general formula for the distribution of time-averaged observables for systems modeled according to the sub-diffusive continuous time random walk. For Gaussian random walks coupled to a thermal bath we recover ergodicity and Boltzmann's statistics, while for the anomalous subdiffusive case a weakly non-ergodic statistical mechanical framework is constructed, which is based on L\'evy's generalized central limit theorem. As an example we calculate the distribution of $\bar{X}$: the time average of the position of the particle, for unbiased and uniformly biased particles, and show that $\bar{X}$ exhibits large fluctuations compared with the ensemble average $<X>$.
---
PDF链接:
https://arxiv.org/pdf/707.3865