摘要翻译:
我们考虑了由基态宏观简并的相态所表征的系统的普遍统计性质。用非线性离散方程描述了这类系统中可能的拓扑序。我们重点讨论了在广义排斥原理统计量的情况下发生的离散方程。我们证明了它们的精确解是某些量子群不可约表示的量子维数。这些解提供了广义排除原理统计量和辫子统计量相交点的一个例子。我们提出了一种利用一维拓扑中编织特征的打结场构型的投影来构造量子二聚体模型的方法。
---
英文标题:
《Topologically ordered phase states: from knots and braids to quantum
dimers》
---
作者:
Luigi Martina, Alexander Protogenov and Valery Verbus
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Strongly Correlated Electrons 强关联电子
分类描述:Quantum magnetism, non-Fermi liquids, spin liquids, quantum criticality, charge density waves, metal-insulator transitions
量子磁学,非费米液体,自旋液体,量子临界性,电荷密度波,金属-绝缘体跃迁
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider universal statistical properties of systems that are characterized by phase states with macroscopic degeneracy of the ground state. A possible topological order in such systems is described by non-linear discrete equations. We focus on the discrete equations which take place in the case of generalized exclusion principle statistics. We show that their exact solutions are quantum dimensions of the irreducible representations of certain quantum group. These solutions provide an example of the point where the generalized exclusion principle statistics and braid statistics meet each other. We propose a procedure to construct the quantum dimer models by means of projection of the knotted field configurations that involved braiding features of one-dimensional topology.
---
PDF链接:
https://arxiv.org/pdf/706.0639