摘要翻译:
文[DJL07]证明了若A是C^N中的仿射超平面排列,则其补数的L^2-Betti数至多有一个为非-零。我们将证明C^2中任意代数曲线的补的一个类似陈述。此外,我们还在L^2-Betti数方面对[LM06]的结果进行了改进和推广。
---
英文标题:
《L^2-Betti numbers of plane algebraic curves》
---
作者:
Stefan Friedl, Constance Leidy and Laurentiu Maxim
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In [DJL07] it was shown that if A is an affine hyperplane arrangement in C^n, then at most one of the L^2-Betti numbers of its complement is non--zero. We will prove an analogous statement for complements of any algebraic curve in C^2. Furthermore we also recast and extend results of [LM06] in terms of L^2-Betti numbers.
---
PDF链接:
https://arxiv.org/pdf/0704.3388