摘要翻译:
利用带角流形的分层Morse理论,给出了由n+l+1项多项式定义的R^n>超曲面的Betti数和的一个新界。
---
英文标题:
《Betti number bounds for fewnomial hypersurfaces via stratified Morse
theory》
---
作者:
Frederic Bihan and Frank Sottile
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We use stratified Morse theory for a manifold with corners to give a new bound for the sum of the Betti numbers of a hypersurface in R^n_> defined by a polynomial with n+l+1 terms.
---
PDF链接:
https://arxiv.org/pdf/0801.2554