摘要翻译:
利用Eisenbud和Schreyer的结果,证明了标准分次多项式环上分次模的任何Betti图都是具有纯分辨率的正线性组合Betti图。这意味着Herzog、Huneke和Srinivasan对于不一定是Cohen-Macaulay的模的多重性猜想。我们给出了纯图所跨越的单纯扇凸性的组合证明。
---
英文标题:
《Betti numbers of graded modules and the Multiplicity Conjecture in the
  non-Cohen-Macaulay case》
---
作者:
Mats Boij and Jonas Soderberg
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We use the results by Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of the convexity of the simplicial fan spanned by the pure diagrams. 
---
PDF链接:
https://arxiv.org/pdf/0803.1645