摘要翻译:
理解系统如何被设计成可进化的是优化、进化和复杂系统科学研究的基础。因此,在生物进化和进化计算领域,许多研究者已经认识到进化能力的重要性,即寻找更高适应度的新变体的能力。Ciliberti et al(Proc.Nat.ACAD.Sci.,2007)和Wagner(Proc.R.SoC.B.,2008)最近的研究提出了系统的鲁棒性和可进化性之间的潜在重要联系。特别是,有人提出健壮性实际上可能导致进化性的出现。在这里,我们研究了两个设计原则,冗余和退化,以实现鲁棒性,我们表明,它们对系统的可演化性有显著不同的影响。特别是,纯冗余系统的演化能力很小,而具有退化性的系统,即分布鲁棒性,可以更好地演化数量级。这些结果提供了实现进化性的一般原则的见解,并可能被证明是在进化计算中追求进化表示的重要一步。
---
英文标题:
《Degenerate neutrality creates evolvable fitness landscapes》
---
作者:
James M Whitacre, Axel Bender
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
---
英文摘要:
  Understanding how systems can be designed to be evolvable is fundamental to research in optimization, evolution, and complex systems science. Many researchers have thus recognized the importance of evolvability, i.e. the ability to find new variants of higher fitness, in the fields of biological evolution and evolutionary computation. Recent studies by Ciliberti et al (Proc. Nat. Acad. Sci., 2007) and Wagner (Proc. R. Soc. B., 2008) propose a potentially important link between the robustness and the evolvability of a system. In particular, it has been suggested that robustness may actually lead to the emergence of evolvability. Here we study two design principles, redundancy and degeneracy, for achieving robustness and we show that they have a dramatically different impact on the evolvability of the system. In particular, purely redundant systems are found to have very little evolvability while systems with degeneracy, i.e. distributed robustness, can be orders of magnitude more evolvable. These results offer insights into the general principles for achieving evolvability and may prove to be an important step forward in the pursuit of evolvable representations in evolutionary computation. 
---
PDF链接:
https://arxiv.org/pdf/0907.0328