摘要翻译:
我们研究了用递归神经网络换能器(RNN-T)训练端到端语音识别模型:一种流式的、全神经的、序列到序列的结构,它从转录的声学数据中联合学习声学和语言模型成分。我们探索了各种模型体系结构,并演示了如果有额外的文本或发音数据可用,如何进一步改进模型。该模型由一个由基于连接主义时态分类(CTC)声学模型初始化的编码器和一个由仅基于文本数据训练的递归神经网络语言模型部分初始化的解码器组成。利用RNN-T损失训练整个
神经网络,并将识别出的文字作为字形序列直接输出,从而实现端到端的语音识别。我们发现,通过使用子词单元(`词块')可以进一步提高性能,这些子词单元捕捉更长的上下文,并显著减少替换错误。最佳的RNN-T系统,一个12层LSTM编码器和一个两层LSTM解码器,以30,000个字为输出目标,在语音搜索和语音听写任务中的错误率分别为8.5%和5.2%,与最先进的基线在语音搜索和语音听写任务中的错误率分别为8.3%和5.4%相当。
---
英文标题:
《Exploring Architectures, Data and Units For Streaming End-to-End Speech
Recognition with RNN-Transducer》
---
作者:
Kanishka Rao, Ha\c{s}im Sak, Rohit Prabhavalkar
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
We investigate training end-to-end speech recognition models with the recurrent neural network transducer (RNN-T): a streaming, all-neural, sequence-to-sequence architecture which jointly learns acoustic and language model components from transcribed acoustic data. We explore various model architectures and demonstrate how the model can be improved further if additional text or pronunciation data are available. The model consists of an `encoder', which is initialized from a connectionist temporal classification-based (CTC) acoustic model, and a `decoder' which is partially initialized from a recurrent neural network language model trained on text data alone. The entire neural network is trained with the RNN-T loss and directly outputs the recognized transcript as a sequence of graphemes, thus performing end-to-end speech recognition. We find that performance can be improved further through the use of sub-word units (`wordpieces') which capture longer context and significantly reduce substitution errors. The best RNN-T system, a twelve-layer LSTM encoder with a two-layer LSTM decoder trained with 30,000 wordpieces as output targets achieves a word error rate of 8.5\% on voice-search and 5.2\% on voice-dictation tasks and is comparable to a state-of-the-art baseline at 8.3\% on voice-search and 5.4\% voice-dictation.
---
PDF链接:
https://arxiv.org/pdf/1801.00841