全部版块 我的主页
论坛 经济学人 二区 外文文献专区
286 0
2022-03-25
摘要翻译:
无线传感器网络在各个领域得到了广泛的应用。然而,传统上它们是与应用程序嵌入在一起部署的,这就排除了它们在新应用程序中的重用。如今,虚拟化通过将物理资源(即感知能力)抽象为逻辑资源,使同一无线传感器网络上的多个应用程序得以实现。然而,这是有代价的,包括能源成本。因此,确保有效分配这些资源至关重要。本文研究了在虚拟无线传感器网络中如何将应用感知任务分配给传感器设备的问题。我们的目标是最大限度地减少分配所产生的整体能源消耗。在考虑传感器节点的可用能量和虚拟化开销的情况下,我们重点研究了该问题的静态版本,并使用整数线性规划(ILP)将其公式化。我们在不同的场景下解决了该问题,并将得到的解决方案与传统的无线传感器网络(即不支持虚拟化的无线传感器网络)的情况进行了比较。我们的结果表明,在支持虚拟化的无线传感器网络中,当任务被适当分配时,可以节省大量的能量。
---
英文标题:
《Energy Efficient Task Assignment in Virtualized Wireless Sensor Networks》
---
作者:
Vahid Maleki Raee, Diala Naboulsi, Roch Glitho
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Distributed, Parallel, and Cluster Computing        分布式、并行和集群计算
分类描述:Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
包括容错、分布式算法、稳定性、并行计算和集群计算。大致包括ACM学科类C.1.2、C.1.4、C.2.4、D.1.3、D.4.5、D.4.7、E.1中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Networking and Internet Architecture        网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Computer Science        计算机科学
二级分类:Performance        性能
分类描述:Covers performance measurement and evaluation, queueing, and simulation. Roughly includes material in ACM Subject Classes D.4.8 and K.6.2.
涵盖性能测量和评估、排队和模拟。大致包括ACM主题课程D.4.8和K.6.2中的材料。
--

---
英文摘要:
  Wireless Sensor Networks (WSNs) are being used extensively today in various domains. However, they are traditionally deployed with applications embedded in them which precludes their re-use for new applications. Nowadays, virtualization enables several applications on a same WSN by abstracting the physical resources (i.e. sensing capabilities) into logical ones. However, this comes at a cost, including an energy cost. It is therefore critical to ensure the efficient allocation of these resources. In this paper, we study the problem of assigning application sensing tasks to sensor devices, in virtualized WSNs. Our goal is to minimize the overall energy consumption resulting from the assignment. We focus on the static version of the problem and formulate it using Integer Linear Programming (ILP), while accounting for sensor nodes' available energy and virtualization overhead. We solve the problem over different scenarios and compare the obtained solution to the case of a traditional WSN, i.e. one with no support for virtualization. Our results show that significant energy can be saved when tasks are appropriately assigned in a WSN that supports virtualization.
---
PDF链接:
https://arxiv.org/pdf/1805.05836
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群