摘要翻译:
从一个特殊的初始条件出发,通过分析有序过程中与时间有关的磁化强度,数值研究了随机场Ising模型中无序临界点附近的合作行为。我们发现,在正常相中,随时间变化的磁化强度涨落强度$\chi(t)$在一个时刻$t=\tau$达到一个最大值,并且$\chi(\tau)$和$\tau$在无序临界点附近出现发散。此外,在时间$\tau$附近的自旋构型有一个长度尺度,在临界点附近也有一个发散。我们用有限尺度的标度方法估计了表征这些幂律发散的临界指数。
---
英文标题:
《Critical fluctuations of time-dependent magnetization in a random-field
Ising model》
---
作者:
Hiroki Ohta and Shin-ichi Sasa
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
Cooperative behaviors near the disorder-induced critical point in a random field Ising model are numerically investigated by analyzing time-dependent magnetization in ordering processes from a special initial condition. We find that the intensity of fluctuations of time-dependent magnetization, $\chi(t)$, attains a maximum value at a time $t=\tau$ in a normal phase and that $\chi(\tau)$ and $\tau$ exhibit divergences near the disorder-induced critical point. Furthermore, spin configurations around the time $\tau$ are characterized by a length scale, which also exhibits a divergence near the critical point. We estimate the critical exponents that characterize these power-law divergences by using a finite-size scaling method.
---
PDF链接:
https://arxiv.org/pdf/706.3629