摘要翻译:
我们证明了在复射影空间$mathbb p^r$上,当$1leq\ler-2$时,由优势拟齐次有理映射所诱导的奇异全纯叶层填满了余维$q$和次$d$的奇异叶层空间$mathscr F_q(r,d)$的不可约分量。我们研究这些不可约分量的几何。特别地,我们证明了它们都是有理变体,并在几种情况下计算了它们的射影度。
---
英文标题:
《Stability of foliations induced by rational maps》
---
作者:
F. Cukierman, J. V. Pereira and I. Vainsencher
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space $\mathscr F_q(r, d)$ of singular foliations of codimension $q$ and degree $d$ on the complex projective space $\mathbb P^r$, when $1\le q \le r-2$. We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute their projective degrees in several cases.
---
PDF链接:
https://arxiv.org/pdf/0709.4072