摘要翻译:
确保计算机的安全是一项重要的任务,恶意用户使用许多技术来危害这些系统。近年来,一种新的威胁以网络形式出现,僵尸机被劫持,用于执行复杂的分布式攻击,如拒绝服务,并获取敏感数据,如密码信息。据说这些僵尸机器感染了“bot”--一种安装在主机上的恶意软件,由远程攻击者控制,称为“僵尸网络的botmaster”。在这项工作中,我们使用受生物启发的树突状细胞算法(DCA)来检测受损主机上单个机器人的存在。DCA是一种基于人体树突状细胞行为的抽象模型的免疫启发算法。通过使用诸如密钥记录和分组洪泛行为的行为属性的相关性来促进由DCA执行的异常检测的基础。将该算法应用于单个bot的检测结果表明,该算法是一种在不响应正常运行程序的情况下检测此类恶意软件的成功方法。
---
英文标题:
《DCA for Bot Detection》
---
作者:
Yousof Al-Hammadi, Uwe Aickelin, Julie Greensmith
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Cryptography and Security 密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
Ensuring the security of computers is a non-trivial task, with many techniques used by malicious users to compromise these systems. In recent years a new threat has emerged in the form of networks of hijacked zombie machines used to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These zombie machines are said to be infected with a 'bot' - a malicious piece of software which is installed on a host machine and is controlled by a remote attacker, termed the 'botmaster of a botnet'. In this work, we use the biologically inspired Dendritic Cell Algorithm (DCA) to detect the existence of a single bot on a compromised host machine. The DCA is an immune-inspired algorithm based on an abstract model of the behaviour of the dendritic cells of the human body. The basis of anomaly detection performed by the DCA is facilitated using the correlation of behavioural attributes such as keylogging and packet flooding behaviour. The results of the application of the DCA to the detection of a single bot show that the algorithm is a successful technique for the detection of such malicious software without responding to normally running programs.
---
PDF链接:
https://arxiv.org/pdf/1001.2195