摘要翻译:
本文通过适当改变变量,证明了Gatheral书中提出的SVI隐含波动率参数化与Heston隐含波动率的大时间渐近性在代数上是一致的,从而证实了Gatheral的一个猜想,并为Heston模型中的渐近隐含波动率提供了一个更简单的表达式。我们展示了这个结果如何帮助解释SVI参数。
---
英文标题:
《Convergence of Heston to SVI》
---
作者:
Jim Gatheral, Antoine Jacquier
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
In this short note, we prove by an appropriate change of variables that the SVI implied volatility parameterization presented in Gatheral's book and the large-time asymptotic of the Heston implied volatility agree algebraically, thus confirming a conjecture from Gatheral as well as providing a simpler expression for the asymptotic implied volatility in the Heston model. We show how this result can help in interpreting SVI parameters.
---
PDF链接:
https://arxiv.org/pdf/1002.3633