摘要翻译:
流体力学在早期脊椎动物胚胎发育中起着至关重要的作用,左-右不对称的建立就是一个例子。在背腹轴和前后轴之后,左右轴是最后建立的轴;在一些物种中,它已经被证明与此有关的一个重要过程是由“旋转”的纤毛驱动的左右不对称流的产生。以前在小鼠腹结节的实验和数学模型中已经建立了一致的旋转方向和后倾的结合产生了左右不对称的血流。斑马鱼的组织结构,枯否氏囊泡,具有比小鼠腹节更复杂的纤毛内部排列;实验研究表明,当从背顶向腹侧观察胚胎时,流呈现逆时针旋转运动。根据已有的轴信息,纤毛的排列和构型的报道提出了产生这种流动的两种可能机制:(1)后侧倾斜与背顶纤毛密度增加相结合,(2)“赤道”纤毛的背侧倾斜。利用正则化Stokeslet边界元法建立了库普弗囊泡内纤毛驱动的对称破缺流动的数学模型。对封闭区域内倾斜旋转纤毛产生的流场的计算表明,能够产生定性和定量特征与实验观测最接近的流场的可能机制是后倾斜的屋顶和地板纤毛与背倾斜的赤道纤毛的组合。
---
英文标题:
《Symmetry breaking cilia-driven flow in the zebrafish embryo》
---
作者:
Andrew A. Smith, Thomas D. Johnson, David J. Smith and John R. Blake
---
最新提交年份:
2013
---
分类信息:
一级分类:Physics 物理学
二级分类:Fluid Dynamics 流体动力学
分类描述:Turbulence, instabilities, incompressible/compressible flows, reacting flows. Aero/hydrodynamics, fluid-structure interactions, acoustics. Biological fluid dynamics, micro/nanofluidics, interfacial phenomena. Complex fluids, suspensions and granular flows, porous media flows. Geophysical flows, thermoconvective and stratified flows. Mathematical and computational methods for fluid dynamics, fluid flow models, experimental techniques.
湍流,不稳定性,不可压缩/可压缩流,反应流。气动/流体力学,流体-结构相互作用,声学。生物流体力学,微/纳米流体力学,界面现象。复杂流体,悬浮液和颗粒流,多孔介质流。地球物理流,热对流和层流。流体动力学的数学和计算方法,流体流动模型,实验技术。
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Fluid mechanics plays a vital role in early vertebrate embryo development, an example being the establishment of left-right asymmetry. Following the dorsal-ventral and anterior-posterior axes, the left-right axis is the last to be established; in several species it has been shown that an important process involved with this is the production of a left-right asymmetric flow driven by 'whirling' cilia. It has previously been established in experimental and mathematical models of the mouse ventral node that the combination of a consistent rotational direction and posterior tilt creates left-right asymmetric flow. The zebrafish organising structure, Kupffer's vesicle, has a more complex internal arrangement of cilia than the mouse ventral node; experimental studies show the flow exhibits an anticlockwise rotational motion when viewing the embryo from the dorsal roof, looking in the ventral direction. Reports of the arrangement and configuration of cilia suggest two possible mechanisms for the generation of this flow from existing axis information: (1) posterior tilt combined with increased cilia density on the dorsal roof, and (2) dorsal tilt of 'equatorial' cilia. We develop a mathematical model of symmetry breaking cilia-driven flow in Kupffer's vesicle using the regularized Stokeslet boundary element method. Computations of the flow produced by tilted whirling cilia in an enclosed domain suggest that a possible mechanism capable of producing the flow field with qualitative and quantitative features closest to those observed experimentally is a combination of posteriorly tilted roof and floor cilia, and dorsally tilted equatorial cilia.
---
PDF链接:
https://arxiv.org/pdf/1309.1303