摘要翻译:
我们给出了Grothendieck非消失定理的一个初等证明:对于具有极大理想$\M$的Noetherian局部环$a$上的有限生成非零模$M$,局部上同调模$H^{\dim M}_{\M}(M)$是非零。
---
英文标题:
《An elementary proof of Grothendieck's Non-vanishing Theorem》
---
作者:
Tony J. Puthenpurakal
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give an elementary proof of Grothendieck's non-vanishing Theorem: For a finitely generated non-zero module $M$ over a Noetherian local ring $A$ with maximal ideal $\m$, the local cohomology module $H^{\dim M}_{\m}(M)$ is non-zero.
---
PDF链接:
https://arxiv.org/pdf/0710.5863