全部版块 我的主页
论坛 经济学人 二区 外文文献专区
224 0
2022-03-06
摘要翻译:
设X是光滑射影4重Y沿光滑曲线C的爆破,设E是例外因子。假设X是一个Fano流形,并且具有(3,1)型的初等极值压缩$\phi:X\to Z$,使得E是$\phi$-充足的(回想一下,如果例外轨迹是一个除数,并且它的图像是一条曲线,则4倍的压缩映射称为(3,1)-型)。我们证明了如果$\phi$的例外因子是光滑的,则Y与$\mathbb{P}^{4}$同构,C是4次椭圆曲线。
---
英文标题:
《A remark on Fano 4-folds having (3,1)-type extremal contractions》
---
作者:
Toru Tsukioka
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let X be the blow-up of a smooth projective 4-fold Y along a smooth curve C and let E be the exceptional divisor. Assume that X is a Fano manifold and has an elementary extremal contraction $\phi: X \to Z$ of (3,1)-type such that E is $\phi$-ample (recall that a contraction map for a 4-fold is called (3,1)-type if the exceptional locus is a divisor and its image is a curve). We show that if the exceptional divisor of $\phi$ is smooth, then Y is isomorphic to $\mathbb{P}^{4}$ and C is an elliptic curve of degree 4.
---
PDF链接:
https://arxiv.org/pdf/0710.1719
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群