摘要翻译:
考虑有限域K上光滑射影簇的有限态射f:x->Y。设X是射影n-空间中至多r阶形式的消失轨迹,至多d阶形式的消失轨迹。我们证明存在一个常数C,它只依赖于N,r,d和deg(f),使得如果#k>C,那么f(k):x(k)->Y(k)是内射的当且仅当它是满射的。
---
英文标题:
《Exceptional covers of surfaces》
---
作者:
Jeff Achter
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Consider a finite morphism f:X -> Y of smooth projective varieties over a finite field k. Suppose X is the vanishing locus in projective N-space of at most r forms of degree at most d. We show there is a constant C, depending only on N, r, d and deg(f) such that if #k > C, then f(k):X(k) -> Y(k) is injective if and only if it's surjective.
---
PDF链接:
https://arxiv.org/pdf/0707.2612