摘要翻译:
证明了完全线性系统在$k3$曲面上光滑曲线间的倾角除Donagi-Morrison例子外是常数。Ciliberto和Pareschi在线性系统充分的附加条件下证明了这一点。因此,我们证明了$K3$曲面上的例外曲线满足Eisenbud-Lange-Martens-Schreyer猜想,并显式地描述了这类曲线。它们被证明是Eisenbud-Lange-Martens-Schreyer在$k3$曲面上的异常曲线例子的自然延伸。
---
英文标题:
《On two conjectures for curves on $K3$ surfaces》
---
作者:
Andreas Leopold Knutsen
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the gonality among the smooth curves in a complete linear system on a $K3$ surface is constant except for the Donagi-Morrison example. This was proved by Ciliberto and Pareschi under the additional condition that the linear system is ample. As a consequence we prove that exceptional curves on $K3$ surfaces satisfy the Eisenbud-Lange-Martens-Schreyer conjecture and explicitly describe such curves. They turn out to be natural extensions of the Eisenbud-Lange-Martens-Schreyer examples of exceptional curves on $K3$ surfaces.
---
PDF链接:
https://arxiv.org/pdf/0705.0302