摘要翻译:
设$V$是一般类型的光滑射影3重。用$k^{3}$表示,这是一个有理数,$v$的任何极小模型的规范束的自交。一种方法将$K^{3}$定义为$V$的规范卷。本文用一个例子$X_{46}_subseteq_mathbb{P}(4,5,6,7,23)$证明了它的下界$k_{3}\ge{1/420}$。
---
英文标题:
《The sharp lower bound for the volume of 3-folds of general type with
\chi(\Co{X})=1》
---
作者:
Lei Zhu
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $V$ be a smooth projective 3-fold of general type. Denote by $K^{3}$, a rational number, the self-intersection of the canonical sheaf of any minimal model of $V$. One defines $K^{3}$ as a canonical volume of $V$. The paper is devoted to proving the sharp lower bound $K^{3}\ge {1/420}$ which can be reached by an example: $X_{46}\subseteq \mathbb{P}(4,5,6,7,23)$.
---
PDF链接:
https://arxiv.org/pdf/0710.4409