摘要翻译:
对特定治疗或政策效果的理解涉及许多感兴趣的领域----从政治经济学、市场营销到保健和个性化治疗研究。在本文中,我们开发了一个非参数的,无模型的试验来检测随着时间的推移治疗的效果,扩展了广泛使用的综合控制试验。该测试建立在许多学习算法产生的反事实预测基础上。在具有可能的结转效应的Neyman-Rubin势结果框架中,我们证明了所提出的检验对于平稳的beta混合过程是渐近一致的。我们并不认为这类学习者一定能捕捉到正确的模型。我们还讨论了平均治疗效果的估计,并提供了预测性能的遗憾范围。据我们所知,这是第一组结果,例如允许任何随机森林在综合控制设置中对可证明有效的统计推断有用。在实验中,我们表明我们的合成学习器比基于合成控制或差中差的经典方法更强大,尤其是在非线性结果模型存在的情况下。
---
英文标题:
《Synthetic learner: model-free inference on treatments over time》
---
作者:
Davide Viviano and Jelena Bradic
---
最新提交年份:
2019
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Understanding of the effect of a particular treatment or a policy pertains to many areas of interest -- ranging from political economics, marketing to health-care and personalized treatment studies. In this paper, we develop a non-parametric, model-free test for detecting the effects of treatment over time that extends widely used Synthetic Control tests. The test is built on counterfactual predictions arising from many learning algorithms. In the Neyman-Rubin potential outcome framework with possible carry-over effects, we show that the proposed test is asymptotically consistent for stationary, beta mixing processes. We do not assume that class of learners captures the correct model necessarily. We also discuss estimates of the average treatment effect, and we provide regret bounds on the predictive performance. To the best of our knowledge, this is the first set of results that allow for example any Random Forest to be useful for provably valid statistical inference in the Synthetic Control setting. In experiments, we show that our Synthetic Learner is substantially more powerful than classical methods based on Synthetic Control or Difference-in-Differences, especially in the presence of non-linear outcome models.
---
PDF链接:
https://arxiv.org/pdf/1904.01490