全部版块 我的主页
论坛 经济学人 二区 外文文献专区
312 0
2022-03-06
摘要翻译:
本文研究了存在随机缺失观测时多跳频信号的谱估计问题。在双线性时频(TF)表示框架内对信号进行分析,利用跳频信号固有的结构设计了TF核。在保留跳频信号自项的同时,设计的核能够有效地抑制交叉项和由于漏检引起的伪影。核化后的结果在瞬时自相关函数域中表示,然后使用重新设计的结构感知贝叶斯压缩感知算法对其进行处理,以准确估计跳频信号的TF谱。该方法即使在大部分数据观测数据丢失的情况下也能实现高分辨率跳频信号谱估计。仿真结果验证了该方法的有效性和优于现有技术的优越性。
---
英文标题:
《Structure-Aware Bayesian Compressive Sensing for Frequency-Hopping
  Spectrum Estimation with Missing Observations》
---
作者:
Shengheng Liu, Yimin Daniel Zhang, Tao Shan, Ran Tao
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this paper, we address the problem of spectrum estimation of multiple frequency-hopping (FH) signals in the presence of random missing observations. The signals are analyzed within the bilinear time-frequency (TF) representation framework, where a TF kernel is designed by exploiting the inherent FH signal structures. The designed kernel permits effective suppression of cross-terms and artifacts due to missing observations while preserving the FH signal auto-terms. The kernelled results are represented in the instantaneous autocorrelation function domain, which are then processed using a re-designed structure-aware Bayesian compressive sensing algorithm to accurately estimate the FH signal TF spectrum. The proposed method achieves high-resolution FH signal spectrum estimation even when a large portion of data observations is missing. Simulation results verify the effectiveness of the proposed method and its superiority over existing techniques.
---
PDF链接:
https://arxiv.org/pdf/1802.00957
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群