摘要翻译:
在这一章中,我们提出并讨论了一个新的广义比例冲突再分配规则。Dezert-Smarandache是Demster-Shafer理论的延伸,重新启动了对组合规则的研究,特别是对冲突管理的研究。在过去的几年里,人们提出了许多组合规则。本文研究了不同的组合规则,并从教学实例决策和生成数据决策两个方面对它们进行了比较。实际上,在实际应用中,我们需要一个可靠的决策,而最终的结果才是最重要的。这一章表明,信念函数理论中的组合必须优先考虑一个精细的比例冲突再分配规则。
---
英文标题:
《A new generalization of the proportional conflict redistribution rule
stable in terms of decision》
---
作者:
Arnaud Martin (E3I2), Christophe Osswald (E3I2)
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of the conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.
---
PDF链接:
https://arxiv.org/pdf/0806.1797