摘要翻译:
我们证明了与Weyl群中具有最小长度的扭类元素相关的Deligne-Lusztig变体是仿射的。我们的证明不同于He和Orlik-Rapoport的证明,它受正则元素情形的启发,正则元素对应于Brou\'e猜想中涉及的各种类型。
---
英文标题:
《Affineness of Deligne-Lusztig varieties for minimal length elements》
---
作者:
C\'edric Bonnaf\'e and Rapha\"el Rouquier
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We prove that the Deligne-Lusztig varieties associated to elements of the Weyl group which are of minimal length in their twisted class are affine. Our proof differs from the proof of He and Orlik-Rapoport and it is inspired by the case of regular elements, which correspond to the varieties involved in Brou\'e's conjectures.
---
PDF链接:
https://arxiv.org/pdf/0708.1246