摘要翻译:
我们提出了一个在非均匀环境中的异常迁移模型,如裂隙岩石,其中颗粒只沿着预先存在的自相似曲线(裂隙)移动。利用随机Loewner方程可以有效地生成分形维数为d_f$的可调曲线。我们用数值方法计算了从半无限平面边缘的一点到半径$R$的半圆上任意一点的首次通过概率(长度或时间)。标度概率分布的方差随d_f$增加,偏度非单调,尾部衰减快于简单指数分布。后者与基于分数动力学的预测形成鲜明对比,并为我们的模型提供了一个实验标志。
---
英文标题:
《First passage times and distances along critical curves》
---
作者:
A. Zoia, Y. Kantor, M. Kardar
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We propose a model for anomalous transport in inhomogeneous environments, such as fractured rocks, in which particles move only along pre-existing self-similar curves (cracks). The stochastic Loewner equation is used to efficiently generate such curves with tunable fractal dimension $d_f$. We numerically compute the probability of first passage (in length or time) from one point on the edge of the semi-infinite plane to any point on the semi-circle of radius $R$. The scaled probability distributions have a variance which increases with $d_f$, a non-monotonic skewness, and tails that decay faster than a simple exponential. The latter is in sharp contrast to predictions based on fractional dynamics and provides an experimental signature for our model.
---
PDF链接:
https://arxiv.org/pdf/705.1474