摘要翻译:
我们证明了电路复杂性的工具可以用来研究全局约束的分解。特别地,我们研究了将全局约束分解为合取范式的性质,即在分解上的单位传播与专门的传播算法具有相同的一致性水平。证明了约束传播子有一个多项式大小分解当且仅当它可以由多项式大小单调布尔电路计算。单调布尔电路大小的下界由此转化为全局约束分解大小的下界。例如,我们证明了对于所有不同的约束,区域一致性传播子不存在多项式大小的分解。
---
英文标题:
《Circuit Complexity and Decompositions of Global Constraints》
---
作者:
Christian Bessiere, George Katsirelos, Nina Narodytska and Toby Walsh
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computational Complexity        计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
---
英文摘要:
  We show that tools from circuit complexity can be used to study decompositions of global constraints. In particular, we study decompositions of global constraints into conjunctive normal form with the property that unit propagation on the decomposition enforces the same level of consistency as a specialized propagation algorithm. We prove that a constraint propagator has a a polynomial size decomposition if and only if it can be computed by a polynomial size monotone Boolean circuit. Lower bounds on the size of monotone Boolean circuits thus translate to lower bounds on the size of decompositions of global constraints. For instance, we prove that there is no polynomial sized decomposition of the domain consistency propagator for the ALLDIFFERENT constraint. 
---
PDF链接:
https://arxiv.org/pdf/0905.3757