摘要翻译:
我们提出并评价了一种免疫学启发的方法,用于ad hoc无线网络中的不当行为检测。节点错误行为可能是入侵的结果,也可能是软件或硬件故障的结果。我们的方法是由生物免疫系统中存在的共刺激信号驱动的。结果表明,在ad hoc无线网络中,共刺激不仅可以显著地提高检测的能量效率,而且还有助于实现较低的误报率。如果与基于看门狗的不当行为检测相比,能源效率的提高几乎是两个数量级。我们给出了由单个节点执行的检测方法和由多个节点协同执行的检测方法之间的权衡的描述。此外,我们还研究了几个用于不良行为检测的特征集。这些特性集对检测系统提出了不同的要求,最明显的是从能源效率的角度来看。
---
英文标题:
《An Immuno-Inspired Approach to Misbehavior Detection in Ad Hoc Wireless
Networks》
---
作者:
Martin Drozda, Sebastian Schildt, Sven Schaust and Helena Szczerbicka
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
We propose and evaluate an immuno-inspired approach to misbehavior detection in ad hoc wireless networks. Node misbehavior can be the result of an intrusion, or a software or hardware failure. Our approach is motivated by co-stimulatory signals present in the Biological immune system. The results show that co-stimulation in ad hoc wireless networks can both substantially improve energy efficiency of detection and, at the same time, help achieve low false positives rates. The energy efficiency improvement is almost two orders of magnitude, if compared to misbehavior detection based on watchdogs. We provide a characterization of the trade-offs between detection approaches executed by a single node and by several nodes in cooperation. Additionally, we investigate several feature sets for misbehavior detection. These feature sets impose different requirements on the detection system, most notably from the energy efficiency point of view.
---
PDF链接:
https://arxiv.org/pdf/1001.3113