摘要翻译:
我们提出了一个形式上精确的统计场论来描述经典流体,其成分类似于量子场论中引入的成分。我们考虑了以下基本的和相关的问题:i)如何找到确定配分函数的正确的场泛函(哈密顿量),ii)如何在场论中引入粒子不可分辨性的等价,iii)如何检验这种方法的有效性。我们可以使用一个简单的哈密顿量,在这个量中,局部泛函以场的形式换位,等价于粒子的不可分辨性。给出了该项的图解展开和重整化。这与费曼展开中的一个非标准问题相对应,需要仔细研究。然后在哈密顿量中引入了与相互作用对势相关的非局域项。结果表明,该方法与用Mayer函数展开给出的标准统计力学之间存在映射关系。我们从三个性质(化学势、所谓的接触定理和界面性质)证明了场论中关联式在非通常量上的移动。并对该理论提出了一些看法。
---
英文标题:
《A formally exact field theory for classical systems at equilibrium》
---
作者:
D. di Caprio, J.P. Badiali
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We propose a formally exact statistical field theory for describing classical fluids with ingredients similar to those introduced in quantum field theory. We consider the following essential and related problems : i) how to find the correct field functional (Hamiltonian) which determines the partition function, ii) how to introduce in a field theory the equivalent of the indiscernibility of particles, iii) how to test the validity of this approach. We can use a simple Hamiltonian in which a local functional transposes, in terms of fields, the equivalent of the indiscernibility of particles. The diagrammatic expansion and the renormalization of this term is presented. This corresponds to a non standard problem in Feynman expansion and requires a careful investigation. Then a non-local term associated with an interaction pair potential is introduced in the Hamiltonian. It has been shown that there exists a mapping between this approach and the standard statistical mechanics given in terms of Mayer function expansion. We show on three properties (the chemical potential, the so-called contact theorem and the interfacial properties) that in the field theory the correlations are shifted on non usual quantities. Some perspectives of the theory are given.
---
PDF链接:
https://arxiv.org/pdf/707.3069