摘要翻译:
研究了有限温度下二维囊泡在线性剪切流中的随机运动。在圆的小变形极限下,导出了朗之万型运动方程,该方程由于周长不变而高度非线性。这些方程在低温极限下求解,采用平均场方法,其中长度约束只平均满足。该约束在低温下的最低变形模式之间施加了非平凡的关联。我们还用多粒子碰撞动力学技术模拟了流体动力学溶剂中的囊泡,在准圆形区域和较大变形情况下,并将稳态变形相关函数和时间自相关函数与理论预测进行了比较。理论计算结果与仿真结果吻合较好。
---
英文标题:
《Two-Dimensional Fluctuating Vesicles in Linear Shear Flow》
---
作者:
Reimar Finken, Antonio Lamura, Udo Seifert and Gerhard Gompper
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The stochastic motion of a two-dimensional vesicle in linear shear flow is studied at finite temperature. In the limit of small deformations from a circle, Langevin-type equations of motion are derived, which are highly nonlinear due to the constraint of constant perimeter length. These equations are solved in the low temperature limit and using a mean field approach, in which the length constraint is satisfied only on average. The constraint imposes non-trivial correlations between the lowest deformation modes at low temperature. We also simulate a vesicle in a hydrodynamic solvent by using the multi-particle collision dynamics technique, both in the quasi-circular regime and for larger deformations, and compare the stationary deformation correlation functions and the time autocorrelation functions with theoretical predictions. Good agreement between theory and simulations is obtained.
---
PDF链接:
https://arxiv.org/pdf/709.2669