摘要翻译:
利用双参数标度形式G(k)=k_c^{-2}G(k\xi,k/k_c)讨论了连续相变附近的序参量关联函数,其中k为波矢,\xi为关联长度,与相互作用相关的非泛动量标度k_c在临界不动点处保持有限。相关函数描述了整个临界区域,并捕获了经典到临界的交叉。单参数缩放仅在k/k_c->0的范围内恢复。利用泛函重整化群给出了Ising普适类g(x,y)的近似计算。
---
英文标题:
《Two-parameter scaling of correlation functions near continuous phase
transitions》
---
作者:
Nils Hasselmann, Andreas Sinner, and Peter Kopietz
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We discuss the order parameter correlation function in the vicinity of continuous phase transitions using a two-parameter scaling form G(k) = k_c^{-2} g(k\xi,k/k_c), where k is the wave-vector, \xi is the correlation length, and the interaction-dependent non-universal momentum scale k_c remains finite at the critical fixed point. The correlation function describes the entire critical regime and captures the classical to critical crossover. One-parameter scaling is recovered only in the limit k/k_c->0. We present an approximate calculation of g(x,y) for the Ising universality class using the functional renormalization group.
---
PDF链接:
https://arxiv.org/pdf/705.4462