摘要翻译:
最近发现,量子命题逻辑和经典命题逻辑都可以用非正交模格类和非分配格类来建模,这些格类分别适当地包含标准正交模格类和布尔类。在本文中,我们证明了即使对于那些排除了标准正交模格和布尔代数的格类,这些逻辑也是完备的。我们还表明,量子计算机和经典计算机都不能建立在后一种模型上。因此,逻辑是“估值-非单调”的,因为当我们在它们的定义条件中添加新的条件时,它们的可能模型(对应于它们可能的硬件实现)和对它们的估值会急剧变化。这些值甚至可以通过将它们放到不相交的格类中来完全分离,这是本文中提出的一种技术。
---
英文标题:
《Standard Logics Are Valuation-Nonmonotonic》
---
作者:
Mladen Pavicic and Norman D. Megill
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
It has recently been discovered that both quantum and classical propositional logics can be modelled by classes of non-orthomodular and thus non-distributive lattices that properly contain standard orthomodular and Boolean classes, respectively. In this paper we prove that these logics are complete even for those classes of the former lattices from which the standard orthomodular lattices and Boolean algebras are excluded. We also show that neither quantum nor classical computers can be founded on the latter models. It follows that logics are "valuation-nonmonotonic" in the sense that their possible models (corresponding to their possible hardware implementations) and the valuations for them drastically change when we add new conditions to their defining conditions. These valuations can even be completely separated by putting them into disjoint lattice classes by a technique presented in the paper.
---
PDF链接:
https://arxiv.org/pdf/0812.2702