摘要翻译:
伯恩斯坦过程是欧几里得量子力学中出现的布朗扩散。与这些过程相关的Hamilton-Jacobi-Bellman方程的对称性知识使人们能够获得随机过程之间的关系(Lescot-Zambrini,《概率进展》,第58和59卷)。最近,似乎每一个因素仿射利率模型(在勒布朗-Scaillet的意义上)都可以用这样一个伯恩斯坦过程来描述。
---
英文标题:
《On affine interest rate models》
---
作者:
Paul Lescot (LMRS)
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
Bernstein processes are Brownian diffusions that appear in Euclidean Quantum Mechanics. Knowledge of the symmetries of the Hamilton-Jacobi-Bellman equation associated with these processes allows one to obtain relations between stochastic processes (Lescot-Zambrini, Progress in Probability, vols 58 and 59). More recently it has appeared that each one--factor affine interest rate model (in the sense of Leblanc-Scaillet) could be described using such a Bernstein process.
---
PDF链接:
https://arxiv.org/pdf/0911.2757