摘要翻译:
对于一个独立等变参数的(三种)情况,我们解决了O(-3)->P^2的等变镜像对称问题。这给出了局部P^2的镜像对称分解为三个子空间的镜像对称,每个子空间都可以独立考虑。最后,我们对O(k)+O(-2-k)->p^1的镜像对称性给出了新的解释。
---
英文标题:
《On equivariant mirror symmetry for local P^2》
---
作者:
Brian Forbes, Masao Jinzenji
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We solve the problem of equivariant mirror symmetry for O(-3)->P^2 for the (three) cases of one independent equivariant parameter. This gives a decomposition of mirror symmetry for local P^2 into that of three subspaces, each of which may be considered independently. Finally, we give a new interpretation of mirror symmetry for O(k)+O(-2-k)->P^1.
---
PDF链接:
https://arxiv.org/pdf/0710.0049