摘要翻译:
多样性是许多领域的核心概念。尽管多样性很重要,但没有统一的方法框架来衡量多样性及其多样性、平衡和差异三个组成部分。目前的方法通过考虑它们的两两相似性来考虑类型的差异。类型之间的成对相似性不能充分捕捉总的差异,因为它们没有考虑到对的相似性。因此,成对相似性并不区分类型在相同特征方面的相似性和类型在不同特征方面的相似性。本文提出了一种基于整个集合上类型之间特征相似性的替代方法。拟议的多样性衡量标准适当地考虑了多样性、平衡性和差异等方面,而不必为多样性的每个方面设定任意的权重。在此基础上,引入了ABC分解法,对多样性、均衡性和差异性提供了单独的度量,使它们分别进入分析。该方法通过分析从1850年到现在的工业多样性来说明,同时考虑到他们所使用的职业的重叠。最后,将该框架扩展到考虑多特征的视差,为高维
数据分析提供了一个有用的工具。
---
英文标题:
《Diversity and its decomposition into variety, balance and disparity》
---
作者:
Alje van Dam
---
最新提交年份:
2019
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
Diversity is a central concept in many fields. Despite its importance, there is no unified methodological framework to measure diversity and its three components of variety, balance and disparity. Current approaches take into account disparity of the types by considering their pairwise similarities. Pairwise similarities between types do not adequately capture total disparity, since they fail to take into account in which way pairs are similar. Hence, pairwise similarities do not discriminate between similarity of types in terms of the same feature and similarity of types in terms of different features. This paper presents an alternative approach which is based similarities of features between types over the whole set. The proposed measure of diversity properly takes into account the aspects of variety, balance and disparity, and without having to set an arbitrary weight for each aspect of diversity. Based on this measure, the 'ABC decomposition' is introduced, which provides separate measures for the variety, balance and disparity, allowing them to enter analysis separately. The method is illustrated by analyzing the industrial diversity from 1850 to present while taking into account the overlap in occupations they employ. Finally, the framework is extended to take into account disparity considering multiple features, providing a helpful tool in analysis of high-dimensional data.
---
PDF链接:
https://arxiv.org/pdf/1902.09167